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1 Introduction 

This document presents a state of the art of sensors, signals and signal processing for measuring EEG 

and non – EEG data. In the following we will focus on sensors and physiological signals for 

 Electroenzephalogram (EEG) 

 Electrocardiogram (ECG) 

 Respiration 

 Electromyogram (EMG) 

 Electrooculogram (EOG) 

The first part of the document includes an overview of sensors and sensor types that are applied for 

measurements in the above mentioned categories. It is separated into sensors for EEG measurements 

and sensors for non-EEG measurements.  

The next part contains an overview about hardware issues, about biosignal amplifiers and about their 

use. This section will explain the state of the art of hardware and how this hardware can be exploited to 

be applied in a research environment. Therefore the biosignals have to be easily measurable and 

processable.  

The final part of the document contains an overview about the literature in the field of signal 

processing algorithms that are applied for analyzing e.g. the ECG or the EEG. The main problem of 

signal processing is how to extract the somehow included information from the sensor signals.  

2 Sensors for biosignal measurements 

Table 1 represents a first overview of sensors for biosignal measurements together with some 

important features for use. As shown different types of sensors, among them sintered Ag/AgCl sensors, 

sensors using disposable and pre-gelled electrodes, finger electrodes and photoelectric sensors, are 

applied at different locations in order to measure different kinds of biosignals. The sampling 

frequencies are important to define the requirements of the biosignal amplifier. 
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Table 1: Sensor techniques for biosignal measurements (by g.tec, TUG and UPF) 

Biosignals Sensor Type Sensor Location 
Min sampling 

frequency Hz 

Optimal 

sampling 

frequency Hz 

EEG signals 

Sintered 

Ag/AgCl 

electrodes 

Scalp (along the 

international 10/20 

electrodes system) 

256 256 

Pulse (Heart rate) 
Photoelectric 

sensor 
Finger, earlobe 64 256 

ECG (Heart rate) 
Disposable 

electrode 

e.g. Einthoven I/II, 

Goldberger, Wilson 

recording 

256 1024 

Electrodermal 

activity 
Finger electrode Hand, foot, forehead 32  32 

Respiration 
Belt/Nose flow 

sensor 
Thorax, abdominal  32 32 

Facial EMG 
Disposable 

electrode 
Face 256 2048 

EMG 
Disposable 

electrode 
Hand, leg 256 2048 

EOG 

Sintered 

Ag/AgCl 

electrodes 

Vertical/horizontal/di

agonal eye 
128 256 

In the following we describe actual solutions mainly provided by g.tec for measuring the signals 

mentioned in Table 1. 

2.1 Sensors and caps for measuring EEG signals 

2.1.1 Electrodes  

For EEG measurements normally single disk electrodes made of gold or Ag/AgCl are used (see Figure 

2). Gold electrodes are maintenance free and have a good frequency response for EEG, EMG or ECG 

measurements. For DC derivations with EEG frequencies below 0.1 Hz Ag/AgCl electrodes perform 

better than gold electrodes. Passive electrodes consist only of the disk material and are connected with 

the electrode cable and a 1.5 mm medical connector to the biosignal amplifier. Active electrodes have 

a pre-amplifier with gain 1-10 inside the electrode which makes the electrode less sensitive against 

environmental noise such as power line interference and cable movements. Because of this fact, active 

electrodes also work if the electrode-skin impedance is higher than for passive electrodes (should be 

below 10 k). Active electrodes have system connectors to supply the electronic components with 

power. Figure 1A, Figure 1B and Figure 1C show EEG electrodes that can be fitted into EEG caps, 

Figure 1D shows an ECG/EMG electrode which is placed close to the muscle/heart. Electrodes of type 

A and D can also be used for EOG recordings. 

A 

 

B 

 

C 

 

D 

 

Figure 1: Electrodes for EEG measurements 

A: Active single electrode with multi-pole connector; B: active gold electrode with multi-pole connector; C: screw-able 

passive gold electrode; D: active ECG electrode with disposable Ag/AgCl electrode 
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2.1.2 Electrode Caps 

EEG electrodes are normally distributed on the scalp according to the international 10-20 electrode 

system (see [17]). Therefore, the distance from the Inion to the Nasion is first measured. Then, 

electrode Cz on the vertex of the cap is shifted exactly to 50 % of this distance, as indicated in Figure 

2A. Figure 2B shows a cap with 64 positions. The cap uses screwable single electrodes to adjust the 

depth and optimize electrode impedance. Each electrode has a 1.5 mm safety connector which can be 

directly connected to the biosignal amplifiers. Active electrodes have system connectors to supply the 

electronic components with power. There are two main advantages of a single electrode system: (i) if 

one electrode breaks down it can be removed immediately and (ii) every electrode montage can be 

realized easily. The disadvantage is that all electrodes must be connected separately each time. Hence, 

caps are also available with integrated electrodes. All the electrodes are combined in one ribbon cable 

that can be directly connected to system connectors of the amplifiers. The main disadvantage is the 

inflexibility of the montage, and the whole cap must be removed if one electrode breaks down. 

A

 

 

B

 

 

C

 

 

D

 

Figure 2: Electrode caps according the 10/20 electrode system  

A: Electrode positioning according to the 10/20 electrode system. B: Electrode cap with screwable single passive or active 

electrodes. C: Electrode cap with build-in electrodes with a specific montage. D: Electrode cap with active electrodes. 

2.2 Pulse rate sensors 

A photoelectric sensor can be used to monitor the pulse waves of subjects. The best places to fix it are 

on the finger or the ear. By detection of the single waves also the heart rate can be extracted from the 

signal. 

 
Figure 3: Pulse rate sensor with biosignal amplifier 

2.3 Disposable electrode (ECG, EMG) 

Disposable Ag/AgCl electrodes are convenient for measuring ECG, EMG and facial EMG. They are 

pre-gelled and self-adhesive, hence they can be fixed onto the subjects skins within seconds, ready to 

use. Similar to EEG electrodes, it is possible to use active clip connectors, to pre-amplify the signal.  
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Figure 4: Disposable electrodes with 

active clips 

Figure 5: Disposable electrodes  Figure 6: Passive clips for disposable 

electrodes 

2.4 Finger electrode (electrodermal activity) 

This sensor measures the conductance of the skin. Therefore sintered electrodes are fixed with Velcro 

straps on 2 fingers. A small current is applied to the skin across the electrodes and the resulting voltage 

drop is measured. The varying output signal of the sensor is proportional to changes in skin 

conductance.  

 
Figure 7: Galvanic skin response sensor for finger mounting (finger electrodes) 

2.5 Respiration belt / Noise flow sensor 

For measuring the respiration two types of sensors are common. For the first one an elastic belt has to 

be fixed around the subject’s chest. Inside the belt are piezo elements who convert the expansion 

(stress) of the belt into an electrical signal. Hence, during expiration, the chests volume will decrease 

and also the expansion of the belt. Needless to say that it behaves the other way during inspiration. 

The second sensor for monitoring respiration is a flow sensor, fixed near the nose and mouth. It is 

designed to measure the change of temperature during inspiration versus expiration. This is usually 

done by using a thermocouple. 

  
Figure 8: Respiration and flow sensor with biosignal amplifier and user 

3 Biosignal amplifier concept 

3.1 Hardware description 

One of the key components of a physiological recording and analysis system is the biosignal amplifier. 

Figure 9 illustrates 3 different devices with different specific key features. g.BSamp is a stand-alone 

analog amplifier which amplifies the input signals to ±10 V. The output of the amplifier is connected 

to a data acquisition board (DAQ) for analog to digital conversion (ADC). g.MOBIlab+ is a portable 



   

Page 5 of 18 

amplifier that transmits already digitized EEG data via Bluetooth to the processing unit. g.USBamp 

sends the digitized EEG via USB to the processing unit.  

A 

 

B 

 

C 

 
Figure 9: Biosignal amplifiers 

A: 16 channel stand-alone amplifier g.BSamp. B: 8 channel wireless amplifier g.MOBIlab+. C: 16 channel amplifier 

g.USBamp with USB connection 

A block diagram of g.USBamp is given in Figure 10. This device has 16 input channels, which are 

connected over software controllable switches to the internal amplifier stages and anti-aliasing filters 

before the signals are digitized with sixteen 24 Bit ADCs. The device is also equipped with digital to 

analog converters (DAC) enabling the generation of different signals like sinusoidal waves, which can 

be sent to the inputs of the amplifiers for system testing and calibration. Additionally, the impedance 

of each electrode can be checked by applying a small current via the individual electrodes and 

measuring the voltage drops. All these components are part of the so-called applied part of the device, 

as a subject or patient is in contact to this part of the device via the electrodes. All following parts of 

the device are separated via optical links from the subject/patient. 

The digitized signals are passed to a digital signal processor (DSP) for further processing. The DSP 

performs an over-sampling of the biosignal data, band pass filtering, Notch filtering to suppress the 

power line interference and calculates bipolar derivations. These processing stages eliminate unwanted 

noise from the signal, which helps to ensure accurate and reliable classification. Then the pre-

processed data is sent to a controller which transmits the data via USB 2.0 to the PC. One important 

feature of the amplifier is the over-sampling capability. Each ADC is sampling the data at 2.4 MHz. 

Then the samples are averaged to the desired sampling frequency of e.g. 128 Hz. Here a total of 19.200 

samples are averaged, which improves the signal to noise ratio by the square root of 19.200 = 138,6 

times. 

 
Figure 10: Block diagram of the biosignal amplifier g.USBamp.  

The applied part is surrounded by the dark gray frame. 
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For EEG or ECoG recordings with many channels, multiple devices can be daisy chained. One 

common synchronization signal is utilized for all ADCs, yielding a perfect non delayed acquisition of 

all connected amplifiers. This is especially important for evoked potential recordings or recordings 

with many EEG channels. If only one ADC with a specific conversion time is used for many channels, 

then a time lag between the first channel and the last channel could be the result (e.g. 100 channels * 

10 µs = 1 ms). Important is also that biosignal acquisition systems provide trigger inputs and outputs to 

log external events in synchrony to the data or to send trigger information to other external devices 

such as a visual flash lamp. Digital outputs can also be used to control external devices such as a 

prosthetic hand or a wheelchair. An advantage here is to scan the digital inputs together with the 

biosignals to avoid time-shifts between events and physiological data. A medical power supply that 

works with 220 and 110 V is required for physiological recording systems that are used mainly in the 

lab. For mobile applications like the controlling a wheelchair, amplifiers which run on battery power 

are also useful. 

Table 2 compares key technical properties of the 3 amplifiers shown in Figure 3 (g.BSamp, 

g.MOBIlab+ and g.USBamp). The most important factor in selecting an appropriate amplifier is 

whether non-invasive or invasive data should be processed. For invasive recordings, only devices with 

an applied part of type CF are allowed. For EEG measurements, both BF and CF type devices can be 

used. The difference here is the maximum allowed leakage current. Leakage current refers to electric 

current that is lost from the hardware, and could be dangerous for people or equipment. For both 

systems, the character F indicates that the applied part is isolated from the other parts of the amplifier. 

This isolation is typically done based on opto-couplers or isolation amplifiers. For a BF device, the 

ground leakage current and the patient leakage current must be ≤100 µA according to the medical 

device requirements, such as IEC 60601 or EN 60601. These refer to widely recognized standards that 

specify details of how much leakage current is allowed, among other details. For a CF device, the rules 

are more stringent. The ground leakage current can also be ≤100µA, but the patient leakage current 

must be ≤10 µA only.  

 
Table 2: Technical key properties of biosignal amplifiers for BCI operation. 

 g.BSamp g.MOBIlab+ g.USBamp 

Signal type EEG/EP/EXG EEG/EP/EXG EEG/EP/EXG/ECoG 

Channels number N 8/16 8 16 

Stackable 32-80 - 32-256 

Sampling rate [Hz] 250kHz/N 256 64-38.4 k 

Simultaneous sample and 

hold 

No No Yes 

ADC inside amplifier No Yes Yes 

#ADCs 1 1 16 

ADC resolution [Bit] 16 16 24 

Over sampling - - 19.400 at 128 Hz 

Conversion time [µs] 4 µs 43 µs 26 µs 

Time delay between 1st 

and last channel 

Conversion time * N Conversion time * 8 Conversion time 

Interface PCI/PCMCIA Bluetooth USB 2.0 

Range [m] 2 30 3 

Power supply 12 V medical power 

supply or battery 

4 AA batteries 5 V medical power 

supply or battery 

Operation time on battery 

[h] 

8 36 8 
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Input Sensitivity ±5 mV/±500 µV ±500 µV ±250 mV 

Minimum high pass [Hz] 0.01 0.01 0 

Maximum low pass [Hz] 5 k 100 6.8 k 

Band pass filter Analog Analog Digital (DSP) 

Notch filter Analog - Digital (DSP) 

Derivation Bipolar Monopolar Monopolar/bipolar 

(DSP) 

# ground potentials 2 1 4 

Connectors 1.5 mm safety 1.5 mm safety / 

system connectors 

1.5 mm safety / 

system connectors 

Impedance test External External Internal 

Applied part BF BF CF 

Isolation of applied part Isolation amplifier Opto-coupler Opto-coupler 

Digital I/Os 8 8 8 

Scanned with inputs No Yes Yes 

The next important feature is the number of electrodes used. ECG recordings are mostly done with 1 

bipolar derivation or a 12 lead ECG derivation (Goldberger, Einthoven, Wilson) is performed. EMG 

recordings are made mostly made with 1-10 derivations. EOG is recorded with one diagonal bipolar 

channels around the eye or with one horizontal and one vertical channels around each eye. 

Additionally one amplifier channels is needed for each external sensor that should be recorded 

(respiration, flow, temperature, acceleration, velocity, oxygen saturation,…). For slow wave 

approaches or oscillations in the alpha and beta range and P300 systems, a total of 1-8 EEG channels 

are sufficient ([10] - [12]). BCIs that use spatial filtering, such as common spatial pattern (CSP), 

require more channels (16-128) (see [13]). For ECoG recordings, 64-128 channel montages are 

typically used [3]. Therefore, stack-able systems might be advantageous because they can extend the 

functionality with future applications. A stack-able e.g. 64 channel system can also be split into four 16 

channels systems if required for some experiments. USB 2.0 provides a much higher bandwidth than 

Bluetooth and therefore allows higher sampling frequencies and more channels. Two clear advantages 

of Bluetooth devices are portability and mobility. Subjects can move freely within a radius of about 30 

meters. USB based wired devices have cable lengths of about 3 meters, and the distance between a 

stand-alone amplifier and a DAQ board should be as short as possible (<2 m). Another advantage is 

that moving the ADC as close as possible to the amplification unit yields a higher signal to noise ratio. 

Amplifiers with bipolar inputs use typically instrumentation amplifiers as input units with a high 

common mode rejection ratio (CMRR). The electrodes are connected to the plus and the minus inputs 

of the amplifier and electrodes are mounted on the scalp in a distance of about 2.5 – 10 cm (see Figure 

11A). The ground electrode is mounted e.g. on the forehead. Bipolar derivations have the advantage of 

suppressing noise and artifacts very well, so that only local brain activity near the electrodes is picked 

up. In contrast, monopolar input amplifiers have a common reference electrode that is typically 

mounted at the ear lobes or mastoids (Figure 11B). Monopolar recordings refer measurements to the 

reference electrode and are more sensitive to artifacts, but make it possible to calculate bipolar, 

small/large Laplacian, Hjorth’s, or common average reference (CAR) derivations afterwards [14]. 

Typically, bipolar derivations are preferred if only a few channels should be used, while monopolar 

channels are used for recordings with many electrodes such as ECoG or when spatial filters are applied 

(Figure 12). Groups of ground potential separated amplifiers allow the simultaneous acquisition of 

other biosignals like ECG and EMG along with EEG without any interference. Another benefit of 

separated ground potentials is the ability to record multiple subjects with one amplifier, which allows 

e.g. BCI games where users can play against each other [15].  
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A 

 

 

B 

 

Figure 11: Scalp electrode montage with bipolar (A) and monopolar recordings (B) 

 
Figure 12: ECoG electrode with 64 electrodes  

(picture from Gerwin Schalk Wadsworth Center, USA, Kai Miller and Jeff Ojemann University of Washington, USA) 

The signal type (EEG, ECoG, evoked potentials – EP, EMG, EOG) also influences the necessary 

sampling frequency and bandwidth of the amplifier. For EEG signals, sampling frequencies of 256 Hz 

with a bandwidth of 0.5 – 100 Hz are typically used [4]. For ECoG recordings, sampling frequencies 

of 512 or 1200 Hz are applied with a bandwidth of 0.5 – 500 Hz [3]. A special case is slow waves, 

where a lower cut – off frequency of 0.01 Hz is needed [10]. For P300 based systems, a bandwidth of 

0.1 – 30 Hz is typically used [16]. Notch filters are used to suppress the 50 Hz or 60 Hz power line 

interference. A notch filter is typically a narrow band-stop filter having a very high order. Digital 

filtering has the advantage that every filter type (Butterworth, Bessel, etc), filter order, and cut-off 

frequency can be realized. Analogue filters inside the amplifier are predefined and can therefore not be 

changed. The high input range of g.USBamp of ±250 mV combined with a 24 Bit converter (resolution 

of 29 nV) allows measuring all types of biosignals (EMG, ECG, EOG, EPs, EEG, ECoG) without 

changing the amplification factor of the device. For 16 Bit AD converters, the input range must be 

lower in order to have a high enough ADC resolution.  

3.2 Programming Environment 

Physiological recording systems are constructed under different operating systems (OS) and 

programming environments. Windows is currently the most widely distributed platform, but there are 

also implementations under Window Mobile, Linux and Mac OS. C++, LabVIEW (National 

Instruments Corp., Austin, TX, USA) and MATLAB (The MathWorks Inc., Natick, USA) are mostly 

used as programming languages. C++ implementations have the advantages that no underlying 

software package is needed when the software should be distributed, and allow a very flexible system 

design. Therefore, a C++ Application Program Interface (API) was developed that allows the 

integration of the amplifiers with all features into programs running under Windows or Windows 

Mobile. The main disadvantage is the longer development time. 
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Under the MATLAB environment, several specialized toolboxes such as signal processing, statistics, 

wavelets, and neural networks are available, which are highly useful components for a BCI system. 

Signal processing algorithms are needed for feature extraction, classification methods are needed to 

separate biosignal patterns into distinct classes, and statistical functions are needed e.g. for performing 

group studies. Therefore, a MATLAB API was also developed, which is seamlessly integrated into the 

Data Acquisition Toolbox. This allows direct control of the amplification unit from the MATLAB 

command window to capture the biosignal data in real-time and to write user specific m-files for the 

data processing. Furthermore, standard MATLAB toolboxes can be used for processing, as well as 

self-written programs. The MATLAB processing engine is based upon highly optimized matrix 

operations, allowing very high processing speed. Such a processing speed is very difficult to realize 

with self-written C code. 

4 Signals and signal processing algorithms 

In the following this document gives a literature overview about existing and well known signal 

processing algorithms applied for the analysis of different biosignals measurable with the systems 

presented above. Due the enormous amount of different biosignals we will restrict ourselves to the 

following 

 ECG 

 EEG 

 EMG 

 Electrodermal activity 

 Respiration, SP02 and skin temperature 

4.1 ECG 

4.1.1 Heart Rate (HR) 

The Heart Rate (HR) is usually derived from the ECG, by an algorithm detecting the single heart beats 

(see e.g. [47]). This can be easily done, as each heart beat is accompanied in the ECG by a QRS 

complex. After detection, an optical inspection of the detected complexes is necessary to prevent false 

positive detections. 

The inverse of the time difference between the so-called normal heart beats (QRS complexes resulting 

from sinus node depolarization) gives the heart rate. The unit of the HR is defined in beats per minute 

(bpm). For calculating the HR, it is sufficient to use three electrodes to obtain Einthoven I or 

Einthoven II leads. The optimal range for the sampling frequency is above 250 Hz as a lower value 

would produce jitter which alters the spectrum considerably [39]. The heart rate is then sampled 

between consecutive intervals (NN intervals), for example as the instantaneous heart rate, IHR [68]. 

For deriving the IHR the value of each NN interval (in bpm) remains constant during the whole 

duration of its corresponding interval, hence the IHR is sampled as a step function. 

Several publications describe the influence of mental tasks onto HR changes. An increase was found 

during cognitive processing [36]. For motor tasks the preparation leads to an HR decrease (see [35], 

[41], [69]), while it increases during mental execution (see [38] and [54]).  

An attempt for using the HR to control a BCI was done by Scherer et al. [61]. In this paper, the HR 

was used to switch on and off a SSVEP controlled prosthesis. Brisk inspiration, performed by the 

subjects, led to an increase in the HR. Each time the HR-increase exceeded a predefined subject 

specific threshold, the device was switched on or off.  

4.1.2 Heart Rate Variability (HRV) 

Heart rate variability (HRV) describes the changes of the HR over time. HRV parameters can be 

divided into time domain and frequency domain measures.  

Time domain methods 

The time domains methods are grouped into statistical methods (SDNN, SDANN, RMSSD, NN50, 

pNN50) and geometric methods (HRV triangular index, TINN, differential index, logarithmic index). 
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 Statistical method: 

The SDNN is the standard deviation of the NN intervals, and is calculated in many studies over for a 

24h period. Comparison of SDNN, derived from measurements of different duration is not suitable. 

When evaluating short periods (usually 5 min.) of one measurement, the SDANN gives the standard 

deviation of the average NN intervals, and the SDNN index the mean of the standard deviations. Also 

measured are the square root of the mean squared differences of successive NN intervals (RMSSD), 

and the number of interval differences of successive NN intervals greater than 50 ms (NN50). The 

latter one depends on the length of the measured data, therefore the pNN50 is better comparable, as it 

is calculated by dividing the NN50 by the total number of NN intervals. 

 Geometric methods 

The HRV triangular index and the triangular interpolation of NN (TINN) are both based on the sample 

density distribution D. It assigns the number of equally long NN intervals to each value of their 

lengths. Now, the HRV triangular index is calculated by dividing the area of D by the maximum of the 

distribution. The triangular interpolation of NN (TINN) is the baseline width of the minimum square 

difference triangular interpolation of the highest peak of the histogram of all NN intervals.  

The differential index is defined as the difference between the widths of the histogram of differences 

between adjacent NN intervals measured at selected heights (e.g., at the levels of 1000 and 10 000 

samples) [29] and the logarithmic index is the coefficient φ of the negative exponential curve k-e
φt

, 

which is the best approximation of the histogram of absolute differences between adjacent NN 

intervals [60].  

Frequency domain methods 

The frequency domain parameters are all derived from an estimation of the power spectral density 

(PSD). This estimation can be done via FFT or parametric methods like an autoregressive model. 

Following this calculation one can extract several power components out of this estimation.  

 Ultra low frequency (ULF): 0 Hz – 0.0033 Hz 

 Very low frequency (VLF): 0.0033 Hz – 0.04 Hz 

 Low frequency (LF): 0.04 Hz – 0.15 Hz  

 High frequency (HF): 0.15 Hz – 0.4 Hz.  

 LF/HF  

The ULF is only used when recording 24-hour data. The VLF is influenced by parasympathetic 

activity [64], while the LF is driven by both, the sympathetic and parasysmpathetic system. HR 

oscillations within this band are most likely a baroreflex response to the 10-s blood pressure 

oscillations (see [32] and [31]). The HF band obtains its influence by the respiratory sinus arrhythmia 

(RSA) that is a heart rate oscillation driven by respiration ([70], [71], [44]). The ratio LF/HF describes 

the balanced behavior of the sympathetic and parasympathetic systems and is therefore an indicator to 

see which of the two systems is actually the dominant one. When the LF component is increased and 

the HF component is decreased the subject is suffering mental stress or is e.g. at high altitude.  

Even with little subjective awareness of the reduced amount of oxygen at an altitude of 2700 m, the 

cardiovascular and central nervous system are already affected. A study on the Dachstein showed that 

the HR increased from 990m altitude to 2700m altitude in a group of 10 subjects. Additionally, heart-

rate variability (HRV) parameters were decreased significantly. Furthermore, with the increase in 

altitude, the sympathetic system becomes more active compared to the parasympathetic system [72]. 

The HR, the HRV and the event-related heart rate changes were calculated from the acquired ECG 

data in social interaction VR simulations [73]. The study shows that the HR and HRV parameters vary 

significantly between the baseline and social interaction experiments. Event-related HR changes show 

the occurrence of breaks in presence (VR projection switched off) and also signified the virtual 

character utterances. 
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4.2 EEG 

The so called ongoing EEG including brain waves or oscillations categorized into different frequency 

bands can be seen as a common activity of a large population of neurons in the neocortex. 

Amplitudes of the ongoing EEG are in the range of 50 – 100 µV. The amplitudes depend on the type of 

EEG derivation (bipolar derivation yields smaller amplitudes compared to monopolar derivations) and 

on the location of electrode placement. The interesting frequency ranges are between 0 – 40 Hz. 

Sometimes components up to 80 Hz are investigated. Table 3 gives an overview over the used 

frequency bands in EEG analysis. Figure 13 displays an example of typical EEG traces in different 

frequency ranges.  
Table 3: Frequency range of the different EEG bands 

EEG band  Frequency range [Hz] 

Delta  0.5 – 4 

Theta  4 – 8 

Alpha Lower alpha 8 –10 

Upper alpha 10 – 13 

Beta  13 –30 

Gamma  > 30 

 
 

Beta 

 

13 – 30 Hz 

 

Alpha 8 – 13 Hz 

 

Theta 4 – 8 Hz 

 

Delta 0.5 – 4 Hz 

 
Figure 13: Typical EEG traces for oscillatory components 

 in different frequency bands. 

Theta activity occurs in children and sleeping adults and delta activity in infants and sleeping adults. 

Alpha activity is best observed in occipital regions and beta activity can be seen if alpha rhythmic 

activity disappears mainly in parietal and frontal areas in adults. 

BCI system can be realized with slow waves [6], motor imagery [6], SSVEP ([28], [53]) or the P300 

evoked potential [16].  

 

4.2.1 Slow Cortical Potentials 

Potential shift of the scalp EEG over 0.5 – 10 s are called slow cortical potentials. Reduced cortical 

activation goes ahead with positive SCPs, while negative SCPs are associated with movement and 

other functions involving cortical activation [74]. People are able to learn how to control these 

potentials, hence it is possible to use them for BCIs as Birbaumer and his colleagues did ([6], [10], 
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[88]). The main disadvantage of this method is the extensive training time to learn how to control the 

SCPs. Users need to train in several 1-2 h sessions/week over weeks or months [74].  

4.2.2 P300 

The P300 wave was first discovered by Sutton [63]. It elicits when an unlikely event occurs randomly 

between events with high probability. In the EEG signal the P 300 appears as a positive wave 300 ms 

after stimulus onset. The electrodes are placed over the posterior scalp. 

Its main usage in BCIs is for spelling devices, but one can also use it for control tasks (for example 

games [40] or navigation (e.g. to move a computer-mouse [33]). When using P300 as a spelling 

device, a matrix of characters is shown to the subject. Now the rows and columns (or in some 

paradigms the single characters) of the matrix are flashing in random order, while the person 

concentrates only on the character he wants to spell. For better concentrating, it is recommended to 

count how many times the character flashes. Every time the desired character flashes, a P300 wave 

occurs. As the detection of one single event would be imprecise, more than one trial (flashing of each 

character) has to be carried out to achieve a proper accuracy.  

Krusienki et al. [48] evaluated different classification techniques for the P300 speller, wherein the 

stepwise linear discriminant analysis (SWLDA) and the Fisher’s linear discriminant analysis provided 

the best overall performance and implementation characteristics. 

A recent study [43], performed on 100 subjects, revealed an average accuracy level of 91.1%, with a 

spelling time of 28.8 s for one single character. Each character was selected out of a matrix of 36 

characters. 

4.2.3 SSVEP 

Steady state visual evoked potentials (SSVEP)-based BCIs use several stationary flashing sources (e.g. 

flickering LEDs, or phase-reversing checkerboards), each of them flashing with another constant 

frequency. When a person gazes at one of these sources, the specific frequency component will 

increase in the measured EEG, over the occipital lobe. Hence, when using different light sources, each 

of them representing a predefined command, the person gives this command via gazing onto the 

source. The classification is either done by FFT-based spectrum comparison, preferably including also 

the harmonics [53], or via the canonical correlation analysis (CCA) (see [49]). A third possibility is via 

the minimum energy approach which was published by O. Friman et.al. in 2007 [75] and requires no 

training. 

Typical SSVEP applications are made for navigation, for example Middendorf et al. [52] used SSVEPs 

to control the roll position of a flight simulator. The number of classes varies between two and eight, 

although Gao et al. [42] established an experiment with even 48 targets, but in this experiment they 

had only one subject. Bakardijan et al. [26] investigated SSVEP responses for frequencies between 5 

and 84 Hz to finding the strongest response between 5.6 Hz and 15.3 Hz peaking at 12 Hz. With their 

frequency-optimized-eight-command BCI they achieved a mean success rate of 98 % and an 

information transfer rate (ITR) of 50 bits/min. Bin et al. [28] reports of a six-target BCI with an 

average accuracy of 95.3% and an information transfer rate of 58 ± 9.6 bits/min. 

Although most SSVEP-based BCIs work with gaze shifting towards a source, recent studies ([25], 

[67]) proofed that only selective attention onto a pattern alone is sufficient for control. The latter paper 

achieved an overall classification accuracy of 72.6 +/- 16.1% after 3 training days. Therefore also 

severely disabled people, who are not able to move their eyes, can control an SSVEP-based BCI. 

4.2.4 Motor imagery 

When subjects perform or only imagine motor tasks, an event related desynchronization (ERD) ([57], 

[58]) and an event related synchronization (ERS) is detectable by changes of EEG rhythms on 

positions close to the respective sensorimotor areas. The ERD is indicated by a decrease of power in 

the upper alpha band and lower beta band, starting 2 seconds before movement onset on the 

contralateral hemisphere and becomes bilaterally symmetrical immediately before execution of 

movement [56]. An ERS appears either after termination of the movement, or simultaneously to the 

ERD, but in other areas of the cortex. The decrease/increase is always measured in comparison to the 

power in a reference interval, for example a few seconds before the movement occurs. For 

classification there are several approaches used. The simplest one is by calculating the bandpower in a 

specific frequency band and consecutive discrimination via a Fisher linear discriminant analysis. Other 
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classification strategies are support vector machines (SVM) (e.g. [80]), principal component analysis 

(PCA) [76], or common spatial patterns (CSP) [77] 

4.3 EOG and eye movements 

The human eye acts as a dipole (the cornea is positive, the fundus negative). Hence it is simple to 

measure eye-movements by placing a pair of electrodes on the left and right side of the eye (near the 

external canthus) and another pair closely below and above it. Following an eye movement a DC shift 

will occur between the electrodes.  The EOG has amplitude of about 20μV per degree of rotation. A 

frequency response of up to 30 Hz is adequate [78]. Beneath eye movement, also blinking causes a DC 

shift in the signal.  

The EOG is used in behavioral studies (e.g. sleep research), or in EEG measurements to identify eye 

movement artifacts. The importance of measuring and dealing correctly with EOG artifacts was carried 

out by Fatourechi et al. [81] when they analyzed more than 250 papers, and revealed weaknesses of 

these studies, considering EOG and EMG artifacts. The ways of dealing with artifacts are either a 

manual or automatic rejection of the data, or automatic removal of the artifact with filtering, PCA, ICA 

or regression [81].  

Eye movements can also be recorded with video eye-trackers where the cameras are positioned close 

to the eye. The advantage is that no electrodes must be assembled onto the subject, but the eyes must 

be visible by the camera. Eye tracking was recently used to control the movement of a car and for 

spelling devices that allows selecting characters on the screen. 

4.4 EMG 

The EMG can be easily recorded by means of either surface electrodes, placed on the skin, or needle 

electrodes inserted into the muscle [78]. The frequency response has a wide range, being maximal at 

frequencies higher than 30 Hz ([82], [83]). The EMG can be used to monitor motor activities, such as 

voluntary foot movement and also spasm or epileptic seizures. Difficult tasks may cause an increase in 

EMG activity related to the movement of facial muscles ([84], [85]). Fatigue can be detected by the 

degradation of the facial muscle activity ([90], [91]), moreover facial EMG can recognize the facial 

expression, such as pleasure, anger and sorrow [91]. 

When measuring EEG it is important, to remove EMG related artifacts, for example McFarland et al. 

examined the presence and characteristics of EMG contamination during new users' initial brain-

computer interface (BCI) training sessions [83]. The methods for dealing with artifacts are the same as 

for removing EOG artifacts [81]. EMG can also be used as an input device for human computer 

interaction allowing to control prosthetics, and orthotic devices.  

4.5 Electrodermal activity (EDA) 

There are two parameters that can be monitored with the EDA ([30], [65]), the Skin conductance level 

(SCL) and the Skin Conductance Response (SCR). 

The range of the skin resistance among subjects is from k  to M. Transient responses, related to 

sudden changes in psychological state are on the order of 100 [78]. 

The SCL describes the overall amount of sympathetic arousal, while the SCR reflects transient changes 

in conductance [73]. A sampling frequency of 32 Hz is sufficient. Because of the inter-individual 

variation of conductance a baseline recording needs to be done before each measurement.  

Slater [73] used GSR (Galvanic Skin Response is another wording for SCR) and HR to quantify 

breaks-in presence (shut off of the VR simulation during the experiment). The frequency response of 

the GSR signal was calculated with a wavelet analysis. GSR parameters and event-related heart rate 

changes show the occurrence of breaks in presence. There were also differences in response observed 

participants who reported more or less social anxiety. 

4.6 Respiration 

Persons perform respiration by either using the rib cage or by abdominal movement. Therefore, when 

using an elastic belt for recording, it is important to place it according to each person, or to use two 
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belts to measure both movements. When the signal is measured with a thermal sensor, it has to be 

placed that way to measure the airflow from both, the nose and the mouth. 

 

5 Conclusion 

In this state of the art document different types of sensors and signals and different kinds of signal 

processing has been discussed. As this field is quite huge, the presented signals is just a sketch of what 

is available and ready for use in biomedical research and for biomedical applications. Based on the 

state of the art sensors will be further developed and signal processing algorithms will be further 

improved in order to improve the output of biomedical research and to the usability for medical 

diagnosis. 
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