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Abstract. In this paper a brain computer interface (BCI) based on steady state 
visual evoked potentials (SSVEP) is presented. For stimulation a box equipped 
with LEDs (for forward, backward, left and right commands) is used that flicker 
with different frequencies (10, 11, 12, 13 Hz) to induce the SSVEPs. Eight 
channels of EEG were derived mostly over visual cortex for the experiment 
with 3 subjects. To calculate features and to classify the EEG data Minimum 
Energy and Fast Fourier Transformation with linear discriminant analysis was 
used. Finally the change rate (fluctuation of the classification result) and the 
majority weight were calculated to increase the robustness and to provide a null 
classification. As feedback a tiny robot was used that moved forward, 
backward, to the left and to the right and stopped the movement if the subject 
did not look at the stimulation LEDs. 

1 Introduction 

A brain computer interface (BCI) is a new way of communication between humans 
and computers. It utilizes a very uncommon, but on the other hand probably the most 
direct way of access to the intentions of a person. The communication towards the 
computer – the will of the person – which is fed into the machine gets collected at its 
source – the brain.  

With a BCI a person ideally does not have to make use of the common output 
pathways of peripheral nerves and muscles, which is the main argument for a BCI-
system. A BCI-system provides a completely new output pathway and this is perhaps 
the only way a person can express herself if he/she suffers for example on disorders 
like amyotrophic lateral sclerosis (ALS), brainstem stroke, brain or spinal cord injury 
or other diseases which impair the function of the common output pathways which are 
responsible for the control of muscles or impair the muscles itself [1]. In such a case 
one possibility is to work with the electrical brainwaves of the person. These are 
measured with the well-known electroencephalography (EEG), which was primarily 
used for clinical purposes only in the past, amplified and fed into a personal computer 
which is under certain circumstances and with appropriate algorithms able to process 
them to give the person a new kind of communication channel. 

For the proposed BCI a neurological phenomenon called steady state visual evoked 
potential (SSVEP) is utilized. A visual evoked potential (VEP) is an electrical 
potential-difference, which can be derived from the scalp after a visual stimulus, for 
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example a flash-light. VEPs after stimuli with a frequency  3.5 Hz are called 
“transient” VEPs. If the stimulation frequency is > 3.5 Hz they are called “steady 
state” VEPs because the individual responses overlap and result a quasi-sinusoid 
oscillation with the same frequency as the stimulus [2]. The goal is to detect this 
frequency reliably with high accuracy and furthermore to detect when the frequency 
is not present, thus when the person does not look at the stimulus. The later one is a 
very challenging task in BCI systems. The paper will introduce signal processing 
methods that allow answering these questions. 

In the following section the methods used for measuring EEG, extracting features 
and classification are described. In Section 3 test results of three test-subjects are 
presented and interpreted. Section 4 summarizes the proposed BCI-system and makes 
suggestions for future work. 

2 Methods 

2.1 Experiment 
Three healthy subjects participated in the BCI experiment and performed first the 
training and then the testing procedure. The training/test procedure is depicted in 
Figure 1. 
20 secs 14 secs 6 secs 14 secs 6 secs 14 secs 6 secs ... 14 secs 6 secs 

Relax flash item #1 break flash item #2 Break flash item #3 break  flash item #12 break  

Fig. 1. The training procedure starts with a 20 second brake to have baseline EEG activity. 
Then each light is flashing sequentially for 14 s with 6 s breaks in between. This loop is 
repeated 3 times. The test procedure layout looks identical with the only exception that the 
lights are flashing three times each in random order. 

2.2 Communication Channels 
This BCI consists of three communication channels. Two of them direct from the 
computer to the test person and one of them directs from the person to the computer. 

The first channel is the stimulation channel in which the computer produces the 
stimulus with certain frequencies. This is realized with a 12x12cm box (see Figure 2) 
equipped with four LED-groups containing three LEDs each. Each LED has a 
diameter of 8 mm and according to the manufacturer a light intensity of 1500 mcd. A 
semitransparent foil was put over the LEDs to make them look like one compact light 
source. Additionally four arrow LEDs were added to indicate the index the user has to 
look at (for training the BCI system). The LEDs are controlled by a microcontroller 
connected to the computer via USB. The accuracy of the produced frequencies has 
been validated using a digital oscilloscope. The measured maximum frequency error 
is < 0.025 Hz at room temperature. 
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Fig. 2. Left: The layout of the LED stimulation box. Right: A test person wearing an electrode 
cap with mounted electrodes and holding the LED stimulation box. The electrodes are 
connected to the biosignal amplifier g.USBamp (g.tec medical engineering GmbH, Austria). 
The robot is located on the right side of the picture, besides the bottle.  

The second communication channel is the EEG-data which is derived from the test 
person. Eight gold electrodes placed mostly over visual cortex on positions POz, PO3, 
PO4, PO7, PO8, O1, O2 and Oz of the international 10-20 system were used with an 
additional reference electrode at the right earlobe and a ground electrode at position 
Fpz. Abrasive gel was applied to make sure that impedances were below 5 kΩ. The 
electrodes were connected to an EEG-amplifier, the g.USBamp (g.tec medical 
engineering GmbH, Austria) which fed the signals over a USB connection into a 
personal computer. The internal bandpass and notch filters of the g.USBamp were 
used. The bandpass was set to 0.5 to 60 Hz and the notch filter was set to 50 Hz. 

The last communication channel is the feedback the computer gives. The EEG data 
is analyzed with feature extraction and classification methods resulting in a 
classification output for each method. Each classifier has a discrete output in the form 
of a number (1, 2, 3 and 4). Finally in the last processing stage, the change rate / 
majority weight analysis step adds a 0 to this set of outputs. The device driver of the 
robot transforms these five numbers semantically to driving commands (0-stop, 1-
forward, 2-right, 3-backward, 4-left) and sends them to the device, the robot, which 
moves and gives the feedback back to the user. 

The output of the first communication channel, the stimulation is more or less 
unvarying. Four LED-groups are flickering with different frequencies. In case of the 
tests the frequencies were 10, 11, 12 and 13 Hz. These frequencies have been chosen 
in preceding off-line tests and showed good performance for five test subjects. 

The processing of the EEG-data, thus the signals of the second communication 
channel is the core piece of this BCI. The programming environment to achieve the 
detection of the frequencies is MATLAB and Simulink.  

EEG data is recorded with a sampling rate of 256 Hz. The overall process (core 
system in Figure 3) works on 2-second windows (512 samples) with an overlap of 
448 samples and consists of three steps: pre-processing, classification and change 
rate/majority weight analysis. These three steps are executed four times a second to 
have a new output every 250 ms. The paradigm controls the stimulation (see 
Section 2.1 – Experiment). 
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Fig. 3. Overview of the BCI-system.  

2.3 Pre-processing 
In the pre-processing step the incoming signal windows from the g.USBamp are 
combined using unweighted Laplacian derivations to form some of the input signals 
for the classifiers [3]. Each Laplacian derivation is composed of one center signal ܺ 
and an arbitrary number ݊  1 of side signals ௌܺ, , ݅ ൌ 1, … , ݊ which are arranged 
symmetrically around the center signal. These signals are then combined to a new 
signal ܻ ൌ ݊ · ܺ െ ሺ ௌܺ,ଵ  ڮ  ௌܺ,ሻ where ݆ is the index of the derivation. Building 
the derivations in such a way performs superior to common reference or bipolar 
derivations in terms of artefact removal and noise cancellation. 

To choose the optimal channel combinations nearly 30 different Laplacian 
derivations were tested on five different subjects to determine which ones deliver the 
best SSVEP-response. The following four derivations have performed best and were 
chosen for the experiment: 

ଵܻ: ܺ ൌ Oz, ௌܺ ൌ ሼO1, O2, PO7, PO8ሽ 
ଶܻ: ܺ ൌ Oz, ௌܺ ൌ ሼO1, O2ሽ 
ଷܻ: ܺ ൌ Oz, ௌܺ ൌ ሼO1, O2, PO3, PO4ሽ 
ସܻ: ܺ ൌ Oz, ௌܺ ൌ ሼPO7, PO8ሽ 

2.4 Feature Extraction / Classification 
Currently classification is done with two different methods. One is the minimum 
energy approach (ME), which was published by O. Friman et.al. in 2007 [4] and 
requires no training. This algorithm is fed with raw EEG-data channels, thus no 
derivations, since it selects the best combination of channels by itself. First of all the 
EEG-data gets “cleaned” of potential SSVEP-signals. This is done by projecting 
artificial oscillations with stimulation frequencies (and harmonics) onto the 
orthogonal complement of the EEG-signals. After that operation the signals contain 
(theoretically) just the unwanted noise. Now a weight vector is generated, which has 
the property of combining the channels in a way, that the outcome has minimal 
energy. Now SSVEP detection is done utilizing a test statistic which calculates the 
ratio between the signal with an estimated SSVEP-response and the signal where no 
visual stimulus is present. This is done for all stimulation frequencies and all EEG-
channels. The output of this classifier is the index of the frequency with the highest 
signal/noise ratio.  

As second method a straight forward approach with the Fast Fourier 
Transformation (FFT) and linear discriminant analysis (LDA) using the Laplacian 
derivations is used. First of all the incoming data gets transformed to the frequency 
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spectrum with a 1024-point FFT. A feature vector is extracted by taking the values on 
the points of the stimulation frequencies and their 1st and 2nd harmonics of all input 
channels. With these feature vectors a weight/bias vector must be generated for each 
user in a training procedure described in Section 2.1. When the training was 
completed successfully the classifier can then be used to classify new feature vectors 
to one of the stimulation frequency indices. 

In the model used for the experiments described in this paper four ME 
classification units and four FFT+LDA classification units were used. In Table 1 the 
input configurations of all classifiers are listed. 

Table 1. Input configurations of the eight classification units. 

Classifier Nr Input channels 
 FFT+LDA ME 

1 ଶܻ, ଷܻ, ସܻ  Oz, O1, O2, PO7, PO8 
2 ଵܻ, ଶܻ, ସܻ  Oz, O1, O2, POz 
3 ଷܻ, ସܻ  Oz, O1, O2, PO7, PO8, POz 
4 ଶܻ, ସܻ  Oz, PO7, PO8 

2.5 Change Rate / Majority Weight Analysis 
The last step is a procedure called change rate/majority weight analysis. By having 
multiple classification units configured with slightly different input data there will be 
in general random classification results on noise input.  

This effect is used on one side to produce a zero decision when the outputs of the 
classifiers are changing heavily and are very different. On the other side a low change 
rate and a high majority weight (the number of classifications of the different 
algorithms which are pointing in the same direction) can be used to strengthen the 
robustness of the decision. Calculation is made on the last four classification results, 
thus on the last second. Default thresholds of 0.25 for change rate and 0.75 (1 – all 
outputs are pointing into the same direction) for majority weight were used. These 
thresholds were chosen more or less instinctively, but have performed well during the 
tests. However, fine tuning these thresholds is an important task for future work. 

The first step of the procedure is to look at the change rate. If it is above the 
threshold the procedure returns a final classification result of 0 which corresponds to 
stop the robot. Otherwise, if it is below the threshold the next step is to look at the 
majority weight. If this is above the threshold the majority is taken as final result, 
otherwise the final output is again 0. In Figure 4 you can see the in- and outputs of the 
procedure. 

The final classification is then sent to the device controller and finally to the robot 
which then provides feedback (the third communication channel) to the user by 
moving towards the corresponding direction (or stopping). 
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Fig. 4. Classification procedure of the BCI-system on the example of 3 decisions (1 -
forward, 3- back, 3- back). Channel 1 shows the target classification of three trials 
(each 14 seconds in length and a 6 seconds break). Channels 2 to 5 are the outputs of 
the four ME classification units and channels 6 to 9 are from the FFT+LDA units. 
Channel 11 shows the change rate and channel 13 shows the majority weight. These 
two values range between 0 and 1. Channel 12 is the majority and channel 10 the final 
classification result which also shows classifications 1, 3, 3 with breaks in between 
which are correctly classified as 0. Note the delay of the final classification in 
comparison to the target. 

3 Results 

Table 2 shows the results of the testing phase. The error rate includes the whole 
data set which means that also the breaks were classified to test the null classification 
when the subject was not looking at the lights to stop the robot. 

Subject 1 for example had an overall error rate of 22.7%. This error breaks down in 
58.5% with no decision (robot stopped where SSVEP stimulation actually happened) 
and 41.5% of wrong decisions (where the chosen class was wrong, unconcerned if 
there had been stimulation or not). 

As mentioned above there exists a delay between the target classification and the 
real output of the BCI. This is caused on one hand by the data collection for the 2-
second analysis window of the classifiers and on the other hand by the change 
rate/majority analysis section which collects four classification outputs for its 
calculations, thus needs 1 second1. The sum of this delay is 3 seconds. To get an idea 
how the error looks if this delay is disregarded the final classification result (channel 

                                                           
1 Smaller delays like the physiological delay of SSVEP itself, from perception of the stimulus 

until the potential is measurable, or delays between sending the “stimulation on/off” signal 
from the computer to the microcontroller of the stimulation box, have been unattended here. 
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10 in Figure 3) was shifted backwards for 768 samples. For online processing this 
would theoretically mean that at the time of analysis the time windows of the system 
would already be filled with appropriate EEG data which was generated by the brain 
processing the right visual signals. This gives a more objective view to the 
classification quality itself. As you can see on the right side of Table 2 subject 1 had 
an overall error rate of 9.5% with a fraction of 28.3% of wrong classifications. This 
means only 28 wrong classifications were made during the whole experiment 
including the breaks (in total 1046 decisions). 

Table 2. Results of SSVEP tests for 3 subjects. The error is calculated by comparing the target 
with the actual classification. The table shows the results without delay (target and actual 
classification are directly compared) and with a 3 seconds delay (the actual classification has a 
delay of about 3 seconds and therefore the target was shifted forward for the comparison). The 
overall error splits up into two subcategories of errors. No decision: no majority could be found 
for one class. Wrong class: the classification result was > 0 and not equal to the target 
classification. ‘Rel’ is the percentage with regard to the overall error. ‘Abs’ is the percentage 
with regard to the whole experiment. 

 Without delay Shifted by 768 samples 

Subject 

Overall 
error [%] 
ME+LDA 

No 
decision  
[%] 
Rel / Abs 

Wrong 
class  
[%] 
Rel / Abs 

Overall 
error [%] 
ME+LDA 

No 
decision  
[%] 
Rel / Abs 

Wrong 
class  
[%] 
Rel / Abs 

S1 22.7 58.5 / 13.3 41.5 / 9.4 9.5 71.7 / 6.8 28.3 / 2.7 
S2 35.7 77.9 / 27.8 22.1 / 7.9 23.5 92.7 / 21.8 7.3 / 1.7 
S3 28.7 63.8 / 18.3 36.2 / 10.4 18.9 75.0 / 14.2 25.0 / 4.7 
Mean 29.0 66.7 / 19.3 33.3 / 9.7 17.3 79.8 / 13.8 20.2 / 3.5 

4 Conclusion 

A BCI system based on SSVEPs was presented which delivers a quasi-continuous 
command stream and has a robust zero-classification mechanism. Three subjects 
participated in tests and achieved an average error rate of 29%. Of these errors 66.7% 
on average are zero-class errors where the robot remains stopped and executed no 
wrong command. Thus the average percentage of wrong commands seen for the 
whole experiments was 9.7%. This is a great performance for controlling the 
movement of a robot including the zero class.  

In future test runs it is necessary to evaluate other parameter configurations (source 
derivations, electrode positions, analysis window lengths, feature extraction 
procedures, thresholds for change rate/majority analysis) to optimize the error rates 
and the delay. This is important for providing fast feedback to the user to give him a 
precise and crisp feeling of control for the robot. 

Further tests will use a predefined route that must be followed with the robot to 
observe performance parameters such as duration, excursions, behaviour of the test 
person when looking between box and feedback of the robot, ... That would not only 
give an impression of the error rate, but also of the usability of the system.  
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It would also be very interesting to test the performance of the computer screen 
stimulator and compare it to the LED stimulator. 

In some other test runs partly other electrode positions were used which lay below 
position Oz. Experiments showed that this yields to a further improvement. 
Furthermore tests have shown that for some subjects LDA had superior performance 
and for other subjects ME worked better. Further experiments are needed to optimize 
this configuration. 
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